

Synthesis of Isoquinolines and Pyridines via Palladium-Catalysed Iminoannulation of Allenes

Jeroen J.H. Diederen, Rene W. Sinkeldam, Hans-W. Frühauf*, Henk Hiemstra and Kees Vrieze

Laboratories of Inorganic and Organic Chemistry, Institute of Molecular Chemistry, Universiteit van Amsterdam,

Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands Received 25 February 1999; accepted 6 April 1999

Abstract: Various isoquinolines and pyridines were prepared from aryl- and vinyl halides by a method which involves insertion of an allene into the Pd-C bond and intramolecular nucleophilic attack of the imine. © 1999 Published by Elsevier Science Ltd. All rights reserved.

The use of $(\pi$ -allyl)palladium complexes as synthetic intermediates is primarily due to their ease of generation by a variety of methods and their accommodation of a wide range of reaction partners (soft and hard carbanions, heteroatom nucleophiles, organotins, carbon monoxide, etc.) to create C-C and carbonheteroatom bonds in a highly stereo- and regioselective way.¹ The versatility of allenes as substrates in palladium-catalysed processes is demonstrated by the great number of recent publications covering intramolecular²⁻⁴ and intermolecular cyclisations.⁵⁻⁸ We are interested in the formation of N-heterocycles by iminoannulation of allenes (1,2-dienes). Recently we published results of the formation of N-heterocycles from cyclopalladated α -tetralone ketimines and 1,1-dimethylallene by using stoichiometric palladium, summarised in Scheme 1.⁹

$$\begin{array}{c|c} \hline & RNH_2 \\ \hline & NR \\ \hline & 2) \text{ LiCl} \\ \hline & Scheme 1 \\ \hline \end{array}$$

A recent paper by Larock *et al.*¹⁰ on a palladium-catalysed iminoannulation with internal alkynes to give 3,4-disubstituted pyridines prompted us to disclose our results on the related iminoannulation with allenes.

Since our Pd(II)-mediated reaction in Scheme 1 cannot be made catalytic, due to the difficulty in reoxidising the Pd(0) formed, we turned our attention to a Pd(0)-catalysed version with *ortho*-halide-substituted aryl imines. We first reacted the benzylimine of o-iodoacetophenone (1) with 1,1-dimethylallene in the presence of 5 mol% of Pd(OAc)₂ and 10 mol% of PPh₃ in acetonitrile at 100 °C to produce iminium salt 2 quantitatively (Scheme 2).

Iminium salt 2 is formed by attack of the nitrogen on the dimethyl-substituted end of the allene preventing formation of an aromatic system. We therefore turned our attention to mono-substituted allenes. Reaction of imine 1 with several mono-substituted allenes¹¹ in the presence of 5 mol% of $Pd(OAc)_2$ and 10 mol% of Ph_3 in acetonitrile at 100 °C produced isoquinolinium salts 3 quantitatively (Scheme 2). Hydrogenolysis of the N-benzyl group with a catalytic amount of Pd/C or $Pd/BaSO_4$ 12 gave isoquinolines 4 in only very moderate yields (Table 1, entries 1-3). We consequently tried other removable substituents on the imine nitrogen.

With reaction of *N*-tert-butyl imine 5 with $Pd(OAc)_2$ and PPh_3 in the presence of Na_2CO_3 as base, which had also been used by Larock, ¹⁰ we obtained the new 4-substituted isoquinolines 6 in moderate to good yields (Table 1, entries 4-6). With vinylic *N*-tert-butyl imines $7^{13,14}$ (Table 1, entry 7), the pyridinium salt was formed quantitatively, but the tert-butyl group was difficult to remove, and only a low yield of the neutral pyridine 8 was obtained.

We now report an easily, by β-elimination removable N-substituent, based upon condensation of various aldehydes with 3-aminopropionitrile. ¹⁵ The reaction of these imines with 1.5 equiv of a monosubstituted allene in the presence of 5 mol % Pd(dba)₂, 5 mol % dppp and 1 equiv of Na₂CO₃ afforded the desired N-heterocycles in good to excellent yields ¹⁶ (Scheme 3 and Table 1, entries 8-13).

$$CN + = R \frac{\text{cat. Pd(0)}}{\text{base}} + R$$
Scheme 3

The catalyst is formed in situ from $Pd(dba)_2$ and dppp. Initial attempts with 5 mol % $Pd(OAc)_2$ and 10 mol % Ph_3 were less selective for the desired heterocycles. Phosphorus ligands are known to increase the electrophilic nature of π -allylpalladium complexes. Furthermore, the use of bidentate ligands facilitates the formation of cationic π -allylpalladium species which are more electrophilic than neutral complexes and therefore highly reactive toward nucleophiles.

After oxidative addition of the carbon-halogen bond to the palladium, the reaction most likely proceeds via a π -allylpalladium intermediate which, after intramolecular nucleophilic attack of the imine onto the allyl carbon, forms a heterocyclic product bearing an exocyclic double bond. This latter product undergoes a 1,3-H shift to form an isoquinolinium salt which loses its N-substituent by β -elimination (entries 4-13) or a Pd-catalysed debenzylation (entries 1-3).

The regioselectivity of this annulation is high. In most cases using mono-substituted allenes, only one regioisomer was observed. Formation of 6-membered rings primarily occurred at the less substituted allyl terminus (entries 1-7, 9-10 and 13), although exceptions were found as well (entries 8, 11-12, 14). Probably, steric effects play an important role in the regioselectivity, e.g. the *tert*-butyl substituted imines

lead exclusively to attack at the less substituted end, whereas the 3-aminopropionitrile imines show lower or no regioselectivity, especially in reaction with less bulky allenes (e.g. 1,2-heptadiene, entries 11-12).

Table 1. Synthesis of Nitrogen Heterocycles by the Pd-Catalysed Annulation of Allenes

Table 1. Synthesis of Nitrogen Heterocycles by the Pd-Catalysed Annulation of Allenes				
entry	imine	R	product	% yielda (ratio
•			•	isomers)
	l		ŀ	
	N Ph	R	N	
		=•= / `		
	1		~ ~ .	
			R 4	
1		Су		10
2		Ph		18
3		nBu		55
			∧ NI	55
4		Cu		58
4	5	Су	~ Y	36
			R 6	
5		Ph		80
6		nBu		40
	~~~N∕ tBu		∕~~ Ņ	
7	< ii ''	Ph		10
•	Br 7	• ••	8	••
			Ph 8	
			Wh Wh	
8	ĆN ĆN	Ph	+ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	60 (50 : 50)
	' 9		l l	
			10 PH 11	
	_\^\\\		√√°µ √√°µ	
9	ĆN ĆN	Ph	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<b>13</b> : 76
	Br 12		13 R 14	
10		C	<del></del>	02
10		Су	13	83
11		nBu	13 + 14	59 b (60 : 40)
12		nBu		85 b (50 : 50)
	15 Br NC		R N N	
	140		16 17 R	
13		Су	- <del>-</del> -	<b>16</b> : 70
13		Ph		40 (50 : 50)
14		1 11		TO (30 . 30)

^a Isolated yield. ^b Isolated as an inseparable mixture of isomers.

In summary, we have shown that 3-aminopropionitrile imines of various aldehydes readily cyclise towards isoquinolines and pyridines using mono-substituted allenes. Further studies into the scope of this iminoannulation method are currently under investigation.

## Acknowledgement

This research has been financially supported by the Council for Chemical Sciences of the Netherlands Organisation for Scientific Research (CW-NWO).

## References and Notes

- Tsuji, J. Palladium Reagents and Catalysts Innovations in Organic Synthesis; John Wiley & Sons Ltd.: Chichester, 1995.
- (2) Prasad, J. S.; Liebeskind, L. S. Tetrahedron Lett. 1988, 29, 4257-60.
- (3) Kimura, M.; Tanaka, S.; Tamaru, Y. J. Org. Chem. 1995, 60, 3764-72.
- (4) Karstens, W. F. J.; Rutjes, F. P. J. T.; Hiemstra, H. Tetrahedron Lett. 1997, 38, 6275-78.
- (5) Larock, R. C.; Berrios-Peña, N. G.; Fried, C. A. J. Org. Chem. 1991, 56, 2615-17.
- (6) Desarbre, E.; Mérour, J.-Y. Tetrahedron Lett. 1996, 37, 43-46.
- (7) Chengebroyen, J.; Pfeffer, M.; Sirlin, C. Tetrahedron Lett. 1996, 37, 7263-66.
- (8) Larock, R. C.; Tu, C.; Pace, P. J. Org. Chem. 1998, 63, 6859-66.
- (9) Diederen, J. J. H.; Pfeffer, M.; Frühauf, H.-W.; Hiemstra, H.; Vrieze, K. *Tetrahedron Lett.* 1998, 39, 4111-14.
- (10) Roesch, K. R.; Larock, R. C. J. Org. Chem. 1998, 63, 5306-7.
- (11) Brandsma, L.; Verkruijsse, H. D. Studies in Organic Chemistry 8, Synthesis of Acetylenes, Allenes and Cumulenes; Elsevier Scientific Pub. Co.: Amsterdam, 1981.
- (12) Wanner, M. J.; Koomen, G. J.; Pandit, U. K. Tetrahedron 1982, 38, 2741-48.
- (13) Arnold, Z.; Holy, A. Collection Czechoslov. Chem. Commun. 1961, 26, 3059-73.
- (14) Gilchrist, T. L.; Healy, M. A. M. Tetrahedron 1993, 49, 2543-56.
- (15) Horváth, A. Synthesis 1995, 1183-89.
- (16) Representative procedure for the annulation of 3-aminopropionitrile aldimines 9, 12 and 15:

  To a 15 mL sealed tube, flushed with nitrogen, was added palladium bis(dibenzylideneacetone),
  Pd(dba)₂ (0.025 mmol; 5 mol %), diphenylphosphinopropane, dppp (0.025 mmol; 5 mol %), the
  aryl- or vinylimine (0.50 mmol), the corresponding 1,2-diene (0.75 mmol; 1.5 equiv.), sodium
  carbonate (0.50 mmol; 1.0 equiv.) and acetonitrile (5 mL). After heating at 100 °C for 16 hours, the
  reaction was diluted with 30 mL of diethyl ether and washed with 40 mL of saturated ammonium
  chloride. The organic layer was dried (MgSO₄), filtered, concentrated and purified via flash
  chromatography (silica gel, EtOAc/hexanes as eluents).
  - 4, R=Ph:  1 H-NMR (300 MHz, CDCl₃)  $\delta$  8.31 (s, 1H), 8.13 (AB, J = 7.8 Hz, 1H), 7.90 (AB, J = 7.8 Hz, 1H), 7.62 (AB₂, J = 7.0 Hz, 1H), 7.57 (AB₂, J = 6.8 Hz, 1H), 7.26-7.15 (m, 5H), 4.36 (s, 2H), 2.97 (s, 3H);  13 C-NMR (75 MHz, CDCl₃)  $\delta$  139.2, 124.0, 121.4, 116.3, 111.3, 109.0, 109.8, 109.3, 108.8, 108.0, 107.60, 107.58, 105.5, 17.6, 3.8; MS (EI, 70eV) m/z (relative intensity) 213 (M⁺, 100), 176 (35), 156 (100); HRMS calculated for C₁₅H₁₉N 213.1517, found 213.1518.